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Humans are able to recognize scenes independently of the modality they perceive it in. In
this paper, it is tested if scene specific features extracted from natural images are reusable for
classifying clip art and sketches. Further, the ability of networks to hold multiple represen-
tations simultaneously is examined. To study this problem a pretrained convolutional neural
network is used. Further, a randomly initialized classifier is added and retrained. The represen-
tations of clip art achieve the highest results, followed by sketches. Natural image performance
remains notably below prior results. The experiment suggests that the overall transferability
of learned features is not only limited by the distance but also by the diversity of the input
distribution. Moreover, a multimodal representation is shown to be feasible but only poorly.
Further research is needed to explain the obtained outcomes and to explain why they deviate
from previous expectations.

Keywords: deep learning, transfer learning, computer vision, cross-domain learning,
multi-modal, fine-tuning, scene recognition

Introduction

Image recognition, the task to identify and detect items
like places, buildings or people in images, has been one
of the most intensively studied topics within the machine
learning community in the last years. In 2012 the AlexNet
(Krizhevsky, Sutskever, & Hinton, 2012) won the ImageNet
Large Scale Visual Recognition Challenge with an imple-
mentation of a convolutional neural network (ConvNet) and
made the technique the state-of-the-art for image classifica-
tion. Since then, ConvNets are the superior approach for
nearly all recognition and detection tasks (Szegedy et al.,
2015). These accomplishments were mainly attained on
natural images and are now getting closer to human per-
formance (Geirhos et al., 2017). However, these achieve-
ments remain di�cult to replicate across di↵erent modali-
ties. In this context both, modalities and domains are de-
fined as information from multiple visual sources. Human
adults can easily detect classes, such as a kitchen, across do-
mains (DiCarlo & Cox, 2007), whereas ConvNets equipped
with generic representations often don’t possess this capa-
bility (Chollet, 2017; Azizpour, Razavian, Sullivan, Maki,
& Carlsson, 2014). Generic since those representations are
acquired by changing the network’s parameters during pro-
cessing a predefined set of images, not through interaction
with the physical environment. Figure 1 shows an example
of some concepts represented in di↵erent modalities. Classi-
fying these scenes is possible with minimal e↵ort for most
people. The problem for computer vision models is that
modalities such as sketches, drawings and clip art often lack
the availability of millions of annotated pictures in curated

datasets. Limited amounts of images yield the problem that
the model is only able to classify the training images and no
new ones. This issue is called overfitting. The model then
contains more parameters than justified by the data (Bishop,
2006). This makes deep convolutional neural networks with
multiple layers and millions of parameters in cases of limited
data especially prone to overfitting. Therefore deep networks
become unable to grasp the right features underlying the im-
age domain. Transfer learning tries to overcome the problem
of scarce resources by using a certain source domain to learn
a classifier for unseen data in a target domain. Good reusabil-
ity of models has numerous advantages, namely a decrease
in training time, being often less computationally expensive,
and the need for less labelled data than training a model from
scratch. Due to the vast field of transfer learning this paper
will focus on transductive domain adaptation applied to vi-
sual tasks. During transductive domain adaptation (some-
times also called transfer learning) the tasks remain the same
across domains but the domains themself di↵er. A major dif-
ficulty in domain adaptation is how to adapt the input distri-
bution of image sets e↵ectively. It will be tested whether the
assumption underlying domain adaptation, namely that input
distributions are shared between two domains and as such
have detectable features in common, holds. To study this
problem, a ConvNet trained on natural images will be reused
to classify unfamiliar domains. In particular an image clas-
sification architecture optimized for the Places365 set will
be fine-tuned on the target domain and used to classify clip
art and sketches with identical scene labels. This way it will
also be tested to what extent the model can represent mul-
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Figure 1. Can you recognize scenes across di↵erent styles? The figure shows a kitchen and an o�ce (concepts) across
di↵erent modalities (clip art, sketches and natural images).

tiple modalities in one network. This approach builds on
prior research done in the field of domain adaptation (Csurka,
2017) and multimodal learning methods (Aytar, Castrejon,
Vondrick, Pirsiavash, & Torralba, 2018) in computer vision.
The exact research question followed by hypotheses is given
in the next section. The remaining parts of the paper are or-
ganized as follows. In the next section, related work and a
biological inspiration for deep learning to improve computer
vision is introduced. Then, a description and insights into the
proposed method is provided. Afterwards, the experimental
setup is described. Finally, the results are presented and dis-
cussed, followed by a conclusion.

Research questions and Hypotheses

Despite recent interest to decipher how the final output
from machine learning algorithms is derived, deep models
often remain black boxes. The following questions join this
line of investigations, focusing on abilities and limitations of
representing multiple domains. Whether the three modalities
possess di↵erent input distributions lead to the first question.
How well does the chosen image classification architecture
trained on natural images perform on classifying clip art and
drawn images? The second question targets the transferabil-
ity of representations in the convolutional base by adjusting
the network. Namely, are the features extracted from a wide
range of natural images reusable for classifying clip art and
sketches?

The hypotheses are built on assessing the literature avail-
able in the field and some prior test experience. First it is
assumed that the image classification architecture will only
be able to classify some images from the new domain. Sec-

ondly, since the features in the utilized ConvNet were ex-
tracted from a broad range of scenes, it is assumed that they
are general enough to be adjusted to modalities they were
not trained on. This hypothesis implicitly assumes that spa-
tial patterns in clip art and drawings are not fundamentally
di↵erent from the ones in natural images.

Transfer learning

Like almost every field in deep learning, the field of trans-
fer learning has grown during the last years and has made
tremendous progress. To get a comprehensive overview of
the topic, transfer learning and related research is described.
Focusing on visual tasks, a comprehensive explanation of
transfer learning is given, the transferability of features is
investigated and some related methods are mentioned.

What is transfer learning? To understand transfer learn-
ing it is important to explain source and target data. The
term source data describes the data the network is originally
trained on, in case of the network used in this paper the
source data consists of natural images. The target data refers
to the data the network should be adapted to, for the purpose
of this experiment those are clip art and drawings. Trans-
fer learning, unlike normal machine learning, aims at train-
ing a model on source data that is di↵erent from the target
data. Compared to classical machine learning transfer learn-
ing achieves better results in domains with limited amounts
of training data (Coutinho, Deng, & Schuller, 2014). The use
of previously learned features makes transfer learning also
beneficial in terms of e�ciency. When transfer learning is
done by supervision, labelled data is used to fine-tune ex-
isting feature representations. Historically, knowledge trans-
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ferring was mainly done within the same modalities (Aytar
& Zisserman, 2011; Ganin & Lempitsky, 2014) and some
first steps towards multimodal learning were taken by gener-
ating a shared representation across modalities (Ngiam et al.,
2011). Transfer learning proves to be well suited for close
domain shifts (Luo, Zheng, Guan, Yu, & Yang, 2018). It
is important that the source and the target domain are from
similar domains, and that the task is similar across those.
Traditional machine learning is characterized by using equal
source and target domains and by performing the same task
on both. During transductive transfer learning (sometimes
also called domain adaptation) the tasks remain the same
across domains but the domains themself di↵er. Datasets for
domain adaptation consist of di↵erent modalities such as nat-
ural images, line drawings or cartoons. Since those images
have no one-to-one correspondence between modalities they
are called weakly aligned. An example of strong alignment
would be a drawing based on a natural image. The alignment
of modalities is important because it determines the transfer-
ability of features.

What can be transferred? To reuse previously learned
features they need certain properties. Those properties are
called transferability characteristics or transferability factors
(Azizpour et al., 2014). Transferability factors define what
part of knowledge can be transferred and how it can be trans-
ferred best. To assess the transferability of features, one
has to look at the characteristics of the underlying dataset.
B. Zhou, Lapedriza, Xiao, Torralba, and Oliva (2014) chose
diversity (number of classes) and density (number of images
per class) to be such characteristics. All images taken in one
kitchen, would have a low diversity but a high density. Mea-
surements of the Places205 showed a high diversity of the
dataset compared with the ImageNet and the SUN dataset
(B. Zhou et al., 2014). Also, the Places205 is a scene-centric
dataset. The di↵erence between object-centric and scene-
centric images plays a role because iconic pictures of ob-
jects don’t contain the richness of visual information that im-
ages of scenes provide (B. Zhou et al., 2014). According to
Donahue et al. (2013) the reason for this is that for scene
recognition a grasp of the entire image is needed. Donahue
et al. (2013) also showed that even within scene-centric im-
ages, features trained on indoor and outdoor scenes, di↵er
significantly. Resulting in the first rule of thumb: scene-
centric images should be transferred to data containing a
lower or the same richness. This is a criterion the approach
in this paper follows. How to transfer best depends on find-
ing the hyperparameter that maximizes transferability. Un-
fortunately, there is often no one single solution that suits
every problem equally well. What could be generalized is
what Azizpour et al. (2014) showed, that interrupting train-
ing (early stopping) does often not improve transferability of
features. What remains to be true for all transfer task is that
an increasing amount of target data improves performance

significantly (Soekhoe, van der Putten, & Plaat, 2016). The
vast amount of literature can be summarized in the second
rule of thumb: With increasing distance between tasks the
transferability gap grows. The same holds true for an in-
creasing space between input distributions of the source and
target dataset (Yosinski, Clune, Bengio, & Lipson, 2014). An
extreme example for input distributions that might lie too far
apart for transfer learning is sentiment analysis where one
tries to transfer knowledge from acoustic data to classify the
sentiment of images. Whether the input distributions are too
far apart between natural images, clip art and drawings can
only be answered after the experiment.

Which methods are related? Related techniques are in-
creasing in number during the last years. For the purpose of
this paper it will be enough to only briefly mention two re-
lated techniques. First, multimodal deep learning combines
complementary information from multiple modalities to im-
prove performance. Multi-modal learning is called multi-
task learning when multiple learning tasks are solved at the
simultaneously (Pan & Yang, 2010). Complications could
arise due to varying levels of noise in the data and evident
conflicts between modalities. Second, One-Shot/Zero-Shot
Learning trains a classifier by using only a very limited num-
ber of examples. This method is useful to exploit datasets in
which the costs of labeling data is high or unfeasible. Inter-
ested readers can consult Socher et al. (2013); Wang, Zheng,
Yu, and Miao (2019) or Fu et al. (2017).

Biological inspiration

Animals and especially Homo sapiens are able to lever-
age knowledge and experiences independently of the modal-
ity they perceive it in (Milne, Wilson, & Christiansen, 2018;
DiCarlo & Cox, 2007). A similar capability in machines
would be an outstanding achievement. This is one of the
many reasons why the use of neuroscientific and biological
models was and still is an important source of inspiration for
some areas of research (Hassabis, Kumaran, Summerfield,
& Botvinick, 2017; Lake, Ullman, Tenenbaum, & Gersh-
man, 2016). For example the idea that networks of neurons
might learn via using supervisory feedback was introduced
by the psychologist Rosenblatt (1958). Some years later
Hubel and Wiesel (1962) made single-cell recordings from
the mammalian visual cortex, that inspired filter and pool-
ing methods in convolutional neural networks (Sejnowski,
2018). Moreover, current network architectures imitate the
hierarchical organization of cortical sensory systems with a
successive, nested information flow (Riesenhuber & Poggio,
1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007).
Even with some cortical-cortical projections in the brain be-
ing inconsistent with pure hierarchical processing, the hier-
archical structure is relevant nevertheless (Hawkins, Lewis,
Klukas, Purdy, & Ahmad, 2018; Markov et al., 2014).

In recent years Yamins et al. (2014) showed how similar
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Figure 2. VGG16 Architecture The picture on the left shows the input of the network, consisting of an RGB image. The
network consists of packages of convolution layers followed by an activation function, namely a rectified linear unit (ReLU)
and finally a maxpooling layer. Those packages are repeated and followed by three fully connected layers. Convolution and
maxpooling layers, shown in orange and red are frozen during training. The fully connected layers (here abbreviated with fc)
make up the classifier, shown in purple. Everything prior to the classifier is frozen and only the classifier is trained. Details
about the parameters, the labels and the shape of the operations can be found in appendix 4 and appendix 5.

performance-optimized hierarchical models are with neural
responses in the higher visual cortex. Even going that far
that deep hierarchical neural networks are beginning to be
useful in the field of computational neuroscience to improve
performance of sensory models (Yamins & DiCarlo, 2016).

Methods

This part describes the approach this paper takes for trans-
ferring scene representations. The goal is to learn a represen-
tation that is optimized for one of the three di↵erent modali-
ties. For this purpose a pretrained ConvNet is modified by
freezing the convolutional base and training the randomly
initialized classifier. The implementation of the network is
done with Keras and Tensorflow as backend. This section
first introduces basics of deep learning building on the con-
cepts explained in the previous sections. In line with this,
information about the dataset and the model are given. Sub-
sequently, the training process and relating hyperparameters
are described.

Basics of Deep learning

Before deep learning, engineers needed to handcraft fea-
tures specialized for narrow tasks. But representations en-
gineered by humans were often inadequate for capturing
salient semantics for a given task. By introducing convo-
lutional filters and backpropagation (LeCun et al., 1989) for
deep networks, this process was successfully automatized.
These techniques are directly inspired by a biological model
of simple and complex cells in visual neuroscience (Hubel &

Wiesel, 1962). ConvNets and pooling layers enable the net-
work to find relevant features or information, extract them,
and obtain discriminative features from the data, called rep-
resentational learning.

Mapping of inputs (I.) is the technique used in deep
learning for dimensionality reduction. During all techniques
used in deep learning, information is stored in a container
for numbers, called a tensor. Tensors are generalizations of
scalars, vectors and matrices to an arbitrary number of in-
dices. Images and labels get equally converted into those
tensors, whereby image tensors are 4D tensors (sample size,
height, width and number of color channels) and labels are
1D tensors (Chollet, 2017). The color channels work with the
RGB color model that can represent a broad array of colors
by mixing, red, green, and blue. These tensors are used as
input and output of the model. Subsequently, the goal is to
find a representation through layered representation learning
that is able to map the input variables via a function to the
output variable. The function is based on techniques derived
from calculus to perform continuous transformation. To find
the function two methods are used, backpropagation and gra-
dient descent which will be explained in detail in the training
section.

Dataset

The input variables consist of natural images from the
Scene205 dataset collected and curated by B. Zhou et al.
(2014). An exhaustive list of the classes can be found in
appendix 1. The set contains around 2.5 million images from
205 scene categories. The compressed file contains resized
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Figure 3. Mapping mechanisms The picture in the upper left corner shows the convolutional operation. The picture in the
upper middle shows the max pooling operation and the picture on the upper right shows a schematic representation of the fully
connected layers. The bottom picture summarizes the mechanisms and is a simplification of the figure 2. The pictures are
taken from Yanming (2017).

256*256 images, split into a train set and a validation set
of Places 205 with a size of 126GB. Due to computational
limitations the number of pictures is reduced to around 80
pictures per object, so that 16,400 pictures remain. The
sketch images consist of 14,830 training and 2,050 valida-
tion sketches collected through Amazon Mechanical Turk,
whereby di↵erent colors indicate di↵erent objects. The clip
art data includes 11,372 training and 1,954 validation clip
art images downloaded from search engines. Sketches and
clip art were assembled by Aytar et al. (2018). Examples
for scene labels are bookstore, lobby and harbor. The same
labels are used across all three domains. Representative pic-
tures can be seen in figure 1.

Model

To assess the research questions in an experimental man-
ner, a pretrained network is used instead of training a network
from scratch. The image classification architecture chosen is
the VGG16 assembled by Simonyan and Zisserman (2014).
It is well established and has a feedforward architecture. This
way the network is well equipped to map the input, the im-
ages, to the output, the labels. The VGG16 architecture is
retained, consisting of 14.714.688 million parameters par-
tioned over 13 convolutional layers. The 5 maxpooling lay-

ers and the ReLU which is applied after every convolutional
layer, do not add further parameters.

Convolutions and ReLU (II.) are the core building
blocks in ConvNets. Convolutional networks convert an in-
put via a kernel function that slides over the input into an
output called feature map. The convolution operation can be
seen in the upper left picture of figure 3. It is used as an edge
detector or filter and works by convoluting a kernel and an
input. The filter value are not static but learned during the
process. Compared to fully connected layers convolutional
layers have sparse weights, this way it is unnecessary for ev-
ery output unit to interact with every input unit. The kernels
are smaller than the input, this way they reduce the amount of
parameters (Goodfellow, Bengio, & Courville, 2016). One
advantage is that weights this way can be shared which re-
duces the memory and computing requirements. Another
advantage is that kernels are translational invariant (Chollet,
2017), meaning that a single kernel per feature map allows
to detect a feature irrespective of where it is in the previous
layer but the resulting activation map still encodes the loca-
tion. This allows kernels to recognize an object even when
its appearance varies in some way (Goodfellow et al., 2016).
The next stage in a ConvNet consists of a nonlinear activa-
tion function. During this step the obtained feature maps are
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passed through a non-linearity such as a rectified linear unit
(ReLU). ReLU is the most popular non-linear function con-
sisting of a rectifier f (z) = max(z, 0). The rectified linear unit
is zero when x < 0 and linear with a slope of 1 when x > 0,
leading to an activation that is thresholded at zero. This is
an advantage compared to e.g. simple linear units since it
enables the network to compute nontrivial problems. ReLu
was first used by Krizhevsky et al. (2012), they showed that
it allows faster training of a deep supervised network without
unsupervised pre-training.

Pooling (III.) is a way of sub-sampling. Average pooling
for example replaces the output at a certain location with a
summary of nearby inputs (Goodfellow et al., 2016). In the
network a max-pooling operation is applied which returns the
maximum value for a set of neighboring neurons (Y. T. Zhou
& Chellappa, 1988). The maxpooling operation can be seen
in the upper middle picture of figure 3. This form of subsam-
pling yields the advantage of progressively reducing the size
of the representation. The superiority of maxpooling layers
over other pooling operations is shown in Scherer, Müller,
and Behnke (2010). The organization of layers can be seen
in figure 2. In the figure it is shown that the described oper-
ations are used several times to produce the desired output.
This iterative process is well suited for mapping an RGB im-
age to a label.

Figure 4. Inside a convolutional network: The figure
shows representations of the AlexNet trained on the Ima-
geNet dataset visualized by Mahendran and Vedaldi (2015).

This hierarchy (IV.) of consecutive convolution and max-
pooling layers ensures the extraction of relevant features.
This hierarchical organization allows to build representations
of increasing complexity. CNNs can encode di↵erent lev-

els of visual information, grasping the underlying represen-
tations (Bengio, Courville, & Vincent, 2013). Examples
of such features can be seen in figure 4, showing the in-
creasing complexity with increasing layer depth. The fig-
ure shows representations of the AlexNet trained on the Ima-
geNet dataset visualized by Mahendran and Vedaldi (2015).
Mahendran and Vedaldi (2015) also showed that the visual-
izations across di↵erent architectures and datasets are com-
parable. Lower level CNN features look like Gabor filters
and are not specific to a particular dataset, unlike last-layer
features. The representation progresses from local, generic
feature maps in the lower levels to more-abstract concepts
in the upper parts. The visualization also accentuates why
a deep architecture is crucial. An architecture with a large
number of layers has a representational advantage compared
to shallow learners. Only the former can grasp the level of
abstraction and the amount of patterns necessary for thou-
sands of objects (Szegedy et al., 2015; Bengio et al., 2011).

As seen in figure 2 the last part of the VGG16 consists
of three fully connected layers (V.). The name fully con-
nected refers to the fact that the layers have connections to
all activations in the previous layer (Goodfellow et al., 2016).
The first two layers of densely connected layers integrate the
information from the previous layers into a coherent whole.
The last fully-connected layer holds the output, such as the
class scores. The last layer is called the ’classifier’ of the
network since it matches the features with the actual labels
(Chollet, 2017). Between the individual fully connected lay-
ers a ReLU function is applied. The last layer is followed by
a softmax function that shows the obtained results in an ar-
ray of 205 probability scores (summing to 1). The pretrained
weights that were implemented into the VGG16 come from
B. Zhou, Lapedriza, Khosla, Oliva, and Torralba (2017), and
were trained on the Places365-Standard composed of 365
scene categories. This network holds the initial representa-
tion, and is a reasonable starting point.

Training

Training Set Test Set Name of the Results
Natural Images Natural Images Natural
Natural Images Sketches Natural-Sketch
Natural Images Clip Art Natural-Clip Art
Sketches Sketches Sketches
Sketches Natural Images Sketches-Natural
Sketches Clip Art Sketches-Clip Art
Clip Art Clip Art Clip Art
Clip Art Sketches Clip Art-Sketch
Clip Art Natural Images Clip Art-Natural

Table 1. Showing the di↵erent training and test
combinations.

During training, the initial representation is kept constant
and the classification mechanism is adjusted. This is done
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with feature extraction by training the model end to end with
a frozen convolutional base. The convolutional layers that
learn local patterns and more abstract arrangements are as-
sumed to hold useful representations already which would
be destroyed by large weight updates. Only the last part,
the fully connected layer, will be randomly initialized and
retrained. To assess the question whether a network trained
on natural images can classify clip art and sketches, a clas-
sifier is put on top of the convolutional base, first trained on
natural images and then tested on itself and the other two
domains. This procedure establishes the original baseline,
which should be close to the value achieved by B. Zhou et
al. (2017). Subsequently it is analyzed if better results are
achieved by training the classifier on the sketches and testing
on sketches afterwards. Throughout the process, the split be-
tween training set and validation set is kept. All 3 training
combinations and all 9 test combinations are shown in table
1. There are three independent training sessions on each im-
age set, all trained with the same learning rate. The models
are tested on the test sets of their own data and consecutively
on the other sets they haven’t been trained on. During the
whole training the convolutional base is frozen.

The image classification architecture is trained with back-
propagation and stochastic gradient descent (VI.). This
training procedure combined gives deep learning its adap-
tive structure and the ability to work on di↵erent datasets.
The backpropagation algorithm was proposed by Rumelhart,
Hinton, and Williams (1988) and later implemented to train
convolutional networks by LeCun et al. (1990). During train-
ing, the backpropagation algorithm is used to indicate which
parameters need to change to compute the combination of
previous layer features that best fit the constraints defined by
the cost function. Backpropagation calculates the chain rule,
highly e�ciently, which is used to determine the derivative
of the cost function. Backpropagation is needed to determine
how much each weight in the network proportionally con-
tributes to the overall error. Hence, the gradient of the cost
function is needed to update the network optimally. Even
with this method training takes time and is computationally
expensive. For this reason only the classifier of the VGG16
will be retrained. Parts of the mathematical implementation
of the backpropagation algorithm are shown in appendix 2.
The loss function is categorical crossentropy, in conjunction
with a softmax output activation function, since the problem
is a multi-class classification with a single label per image.
The loss function measures the error between output score
and the desired pattern of scores. The optimizer, necessary
to define how the network will be updated based on the loss
function, is stochastic gradient descent (SGD). SGD uses
the gradient computed during backpropagation to adjust the
weights. During this process SGD uses subsets of the overall
dataset (minibatches) to find a local minumum. The mini-
mum is reached when a set of weights for all layers in the

network is found that maps example inputs as good as pos-
sible to their associated targets. The step size of the SGD is
defined by the learning rate (Azizpour et al., 2014). Details
about the SGD algorithm can be found in appendix 3. For
training a Macbook Pro with a 2,3-GHz dual-core Intel Core
i5-processor was used. The learning rate was found through
training the clip art training set with 5 di↵erent learning rates
(ranging from 1 to 1e(�4)) for 21 epochs each. The clip art
dataset was chosen for optimization because the amount of
available training images was the lowest. The accuracy val-
ues achieved on the validation set were most steady for the
learning rate of lr = 1e(�4) (0.0001). It took an overall train-
ing time of 181 hours (7.5 days) to obtain this result. Details
can be obtained from appendix 6 and appendix 7. This learn-
ing rate was chosen to be the one best suited for training all
data sets. The training on the actual data sets was again run
for 21 epochs. The batch size was set to 32 for training and
validation data. Training time per epoch was 2.3 hours on
average per epoch, so taking an average 49 hours per domain.

Results and Analysis

This section summarizes the findings by first giving the
chance-based baseline results, second by stating in detail the
accuracy values obtained on the di↵erent test sets and third
by analyzing the results.

Baseline Results

The value obtained by chance on the input data are
1/205 = 0.49%, this value is a bottom line. The values
achieved by B. Zhou et al. (2014) on the original Places205
yield a classification accuracy of 50.2%. The Places365-
VGG applied during the current study has a top-1 accu-
racy of 55.24% on the Places365 set (B. Zhou et al., 2017).
Accuracy values for the Places665-VGG obtained on the
Places205 dataset are not available.

Accuracy values

For natural images the network needed 22 epochs to reach
a training accuracy of 91.81% with a maximum validation
accuracy of 16.15%. For sketches 19 epochs were necessary
to achieve a training accuracy of 79.59% and a validation
accuracy of 18.38%. For clip art 19 epochs were necessary
to achieve a training accuracy of 95.90% and a validation
accuracy of 32.00%. The results are shown in table 2. De-
tailed information about the training process can be found in
appendix 8. The optimal point of training was chosen before
the models started to overfit. Since overfitting occurs when a
model fits too well to the training set this point was reached
when the validation accuracy started to decline. The accu-
racy of the validation set is a metric for the generalization
performance of the network.
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Name of the Results Accuracy
Natural 16.150%
Natural-Sketch 1.797%
Natural-Clip Art 4.973%
Sketches 18.380%
Sketches-Natural 1.386%
Sketches-Clip Art 6.623%
Clip Art 32.000%
Clip Art-Sketch 4.083%
Clip Art-Natural 2.566%

Table 2. Showing the di↵erent training-test combinations
and their accuracy values. The accuracy values for the
retrained classifier are obtained on the validation set.

All models performed best on the domain they were
trained on. The training accuracy of clip art increases fastest
and is above 81.27% after 8 epochs. This is the point where
the discrepancies between the three modalities is the largest.
This could this could be due to the fact that the model already
has a training accuracy of 16.14% in the first epoch. After
8 epochs, sketches have a training accuracy of 31.94% and
natural images of 37.45%. The training accuracy for clip art
for all epochs remains higher than the results achieved on the
other two sets. The largest positive step between two con-
secutive epochs is between epoch 8 and epoch 9 for natural
images. Here, the model gained 5.38 percentage points on
the validation accuracy. The largest negative step between
two consecutive epochs is between epoch 16 and epoch 17
for sketches, there the model lost 3.31 percentage points on
the validation accuracy. A detailed analysis of di↵erences
between epochs can be seen in appendix 9. Both, sketches
and natural images took longer to reach high accuracy val-
ues on the validation set. This might be due to the fact that
the learning rate is optimized for the clip art images. It ap-
pears that both, sketches and natural images could have been
trained with a higher learning rate or more epochs. The val-
idation accuracy achieved on the clip art set is nearly dou-
ble the accuracy achieved on the natural image set, showing
a significant di↵erence. This is especially interesting since
the network was pre-trained on this domain and because the
natural images did not come close to the values achieved by
B. Zhou et al. (2017).

Another goal of the paper was to to learn a multi-modal
representation of di↵erent domains. Therefore, the obtained
networks were consecutively tested on the datasets they were
not trained on. The testing on the other modalities was done
on every training and validation set and afterwards combined
by calculating the weighted average in the following way:

acc(train) ⇤ n(train) + acc(val) ⇤ n(val)

n(train) + n(val)
= accuracy

Where acc is referring to the accuracy, train to training
data, val to validation data and n is the number of images.

Using this formula the classifier trained on natural images
achieves an accuracy value of 1.80% on the sketch images
and a value of 4.97% on the clip art data. This answers the
questions statet at the beginning, how well the chosen im-
age classification architecture performs on classifying clip
art and drawn images. The classifier trained on the sketch
dataset achieves an accuracy value of 1.39% on the natural
images and a value of 6.62% on the clip art set. The image
classification architecture trained on clip art images yields
an accuracy score of 4.08% on the sketches and a value of
2.57% on the natural image set. The results are shown in
table 2. The best overall values were achieved with the clas-
sifier trained on clip art. All values mentioned in this section
were above the chance level of 0.49%.

Analysis

This part uses the obtained results to answer the research
questions stated at the beginning. A comparison between
prior hypotheses and the obtained accuracy values is made.
Further, an interpretation of the results is stated, giving pos-
sible explanations for the unexpected results.

Is the pretrained ConvNet reusable for classifying clip
art and sketches? The best results were obtained on clip
art. With an accuracy of 32.00% the pretrained ConvNet
holds enough prior knowledge to achieve such a mixed re-
sult. For sketches the frozen convolutional base was also able
to provide enough information to reach an accuracy close
to classifying one out of five of the images correctly. This
targets the second question whether the features extracted
from natural images are reusable for classifying clip art and
sketches. However, the result is opposing the research hy-
pothesis and prior expectations. It was assumed that since the
convolutional base and the target domain are derived from
the same dataset they were expected to perform best. One
reason why this might not be the case is that the ConvNet
was trained on the Places365 and the classifier was trained
on the Places205 dataset. The main limitation do not seem
to be the di↵erence in the input distribution but instead the
transferability is limited by the diversity within domains. The
diversity within a domain is comparable to the width of the
input distribution. For clip art and sketches it seems like the
main assumption underlying domain adaptation is partly vi-
olated due to dissimilarity of features across the domains.
Groen, Ghebreab, Prins, Lamme, and Scholte (2013) already
proposed the explanation that man-made and natural scenes
are fundamentally di↵erent in scene perception. But due to
the low values achieved on the natural images it could even
be argued that the distance between the two domains is not
that far. However, it remains questionable how good the re-
sults would have been if a classifier was trained on a for ex-
ample randomly initialized network. Such results as com-
parison could further illustrate the role of prior representa-
tions. While performing the analysis, an additional question
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emerged, namely whether features learned on one domain
generalize well. It is assumed that a model that generalizes
well on other domains hold multiple representations simulta-
neously.

Do features learned on one domain generalize well?
The results for multimodality all remain below 7.00%, which
is still above chance level but essential lower than the values
achieved on the modality they were trained on. The domain
that generalizes best is clip art. The clip art data performed
with the highest accuracy on the other two datasets and also
had a reasonable performance itself. Hence, clip art holds
the best multimodal representation comparing the 3 classi-
fiers. Regarding the accuracy values it can be concluded that
the input distributions from sketches and clip art are closer
than the input distribution of natural images to sketches or
clip art. Not only do both models perform best on each other
(clip art on sketches 4.08%, sketches on clip art 6.62%), but
also better than natural images (natural on sketches 1.80%,
natural on clip art 4.97%).

Overall, multiple representations within the same network
seem possible but only in a narrow range. These results pos-
sibility could be increased by training the model in a truly
multimodal fashion. The current classifiers were not fur-
ther trained to be explicitly multimodal. To a certain amount
the model was still able to leverage the obtained knowledge
across di↵erent domains. The trade-o↵ between being mul-
timodal and being optimally suited for one domain could not
be further analyzed in this context.

Finally, the task of classifying places with limited
amounts of data is di�cult for several reasons. Since the la-
bels of classes rely on underlying human concepts there is no
guarantee that each class is equally diverse or rich. Concepts
can go beyond physical appearance of objects. A kitchen for
example is not only characterized by the objects in it, but also
through the activities an individual does there (e.g. cooking,
eating). This might be one of the reasons why natural images
with limited amounts of data were classified worse than clip
art. Clip art is more prone to capture stereotypical features of
the class only, this possibly reduces the richness and makes
it easier to generalize to data not seen before. For natural
images the bias towards stereotypical images is not existing,
this is an explanation why the limited amount of 16.400 im-
ages might not have been enough to build up a reasonable
representation of the domain.

Discussion

The aim of the present study was to determine whether
learned representations are transferable from natural images
to clip art or drawings. Further, the ability of networks to
hold multiple representations simultaneously was studied.
The results can be summarized as follows. First, the overall
transferability of learned features is not only limited by the
distance but also by the diversity of the input distribution.

Second, the representations of clip art achieve the highest
results in the current study. Third, concerning the possibility
of multi-modal representations it was shown that such repre-
sentations perform relatively poor. The current study raises
questions concerning the reusability of fully connected layers
when not properly assessing the optimal learning rate before-
hand. Especially the bad performance of the network trained
with natural images needs further investigation.

Limitations A major drawback of the current study is
how poorly the dataset is curated. The datasets were gener-
ated by humans but not validated by humans afterwards. In
some cases it remains doubtful if the images could be clas-
sified correctly by humans. This makes it eminently hard
to classify some images correctly. The problem was espe-
cially evident in the sketches images, which was shown by
the low overall accuracy. An example can be seen in fig-
ure 5. Another problem was the availability of unexpected
additional information in the clip art dataset, leading to an
overestimation of predictability. The additional information
was provided by watermarks on the pictures. It was not fur-
ther tested to what extend the watermarks were distributed
equally across classes and how strong their influence on the
final results was. The limited amount of available training
data worsens this problem. Due to limited computational
resources, training the network end-to-end for this project
was out of scope. The values obtained during training the
network end-to-end would have been a good value to com-
pare the results obtained in this study to. It is for example
possible that even with training the model end-to-end the re-
sults for sketches remain close to the results achieved in this
study. This performance might therefore not be due to the
poor transferability of features but due to the inability of con-
volutional networks to grasp the right features within the do-
main. Another possible issue is the diversity of classes. Even
within a single class there is often a broadly defined range of
what a class consists of. For example the class ’shopfront’
could be further subdivided. Broadly defined classes make it
harder to find a unified representation of the class.

Figure 5. Can you recognize the class? An example of a
’tower’ from the sketches dataset.

Future directions A possible solution for the ’subdivision
of classes problem’ is to increase the richness of the labels.
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By applying this approach, the high within class diversity and
individual items in a class can be classified additionally to the
scene as a whole. Next, only the sum of the items is used to
classify the scene. A subsequent comparison to the current
study might give clarification which approach is better suited
for classifying scene images.

Improve the baseline As already mentioned in the limita-
tions, determining an accuracy baseline with a network that
was trained end-to-end yields potential information. If the
values achieved during the end-to-end training are not above
the values achieved in this study, the input distributions might
not be that di↵erent.

Between domains Furthermore, an improvement of the
dataset’s quality might significantly a↵ect the results. By
deleting or replacing images that are not classifiable by hu-
mans, a quality improvement could be achieved. Regulariza-
tion methods might increase the values significantly. Such
methods make modifications to the learning algorithm or the
network such that the model generalizes better (Goodfellow
et al., 2016). However, the questions of which representa-
tions are better transferable than others and why remains.
Nevertheless, absolute or relative di↵erences in accuracy
gains between domains yield potential information necessary
for further analysis.

Between classes A next step towards getting a more com-
plete picture about the transferability of features is to look
if large di↵erences between classes exist. If such di↵erences
exist it is necessary to explore how the di↵erences can be jus-
tified. If accuracy values obtained for a bathroom compared
to those of an o�ce room di↵er notably, further examination
should be considered. In a similar investigation, Donahue et
al. (2013) found that feature trained on indoor and outdoor
scenes di↵er significantly.

Colours Comparable to studying between classes di↵er-
ences is an investigation of the e↵ects of color on transfer-
abiliy. Sketch images are, compared to the other two image
sets, less colorful and less nuanced in their color grading and
richness. The use of black and white color channels shed
light on the question of how big the role of di↵erent color
grading is for the transferability. For the sketch domain only
between four and six colours were used. It is expected that
the validation accuracy of this domain su↵ers less than the
other domains.

Multi-modal representations To test whether multi-
modal representations are possible to exist within the same
network, the network can be trained with multiple domains
simultaneously. The mixing of di↵erent domains can lead to
the best possible multi-modal network and to a strong align-
ment across domains. It remains questionable if the overall
representation of two domains can coexist or if there is al-
ways a trade-o↵ situation.

Input distribution In the future, it will be important to
find reliable techniques that are able assess the distance be-

tween two domains to see whether transfer learning is pos-
sible. The measurement of distances between input distri-
butions is inherently di�cult because a method to boil down
the characteristics of an input distribution has not been found
yet. This issue leads to the question how to optimally set the
hyperparmaters for a network. Often only the consecutive
testing of di↵erent settings discloses the best option and de-
fines the model that is able to grasp statistical regularities.
Since recently these hyperparameters were set by humans,
but the trend might shift to quantifying input distributions be-
forehand during the next years. This would decrease training
time and make for example convolutional neural networks
available to a broader spectrum of users.
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Appendix

Appendix 1 - Classes
All 205 classes in alphabetical order: abbey, airport,
terminal, alley, amphitheatre, amusement park, aquarium,
aqueduct, arch, art gallery, art studio, assembly line, attic,
auditorium, apartment building outdoor, badlands, ballroom,
bamboo forest, banquet hall, bar, baseball field, basement,
basilica, bayou, beauty salon, bedroom, boardwalk, boat
deck, bookstore, botanical garden, bowling alley, boxing
ring, bridge, building facade, bus interior, butchers shop,
butte, bakery shop, cafeteria, campsite, candy store, canyon,
castle, cemetery, chalet, classroom, closet, clothing store,
coast, cockpit, co↵ee shop, conference center, conference
room, construction site, corn field, corridor, cottage garden,
courthouse, courtyard, creek, crevasse, crosswalk, cathedral
outdoor, church outdoor, dam, dining room, dock, dorm
room, driveway, desert sand, desert vegetation, dinette
home, doorway outdoor, engine room, excavation, fairway,
fire escape, fire station, food court, forest path, forest
road, formal garden, fountain, field cultivated, field wild,
galley, game room, garbage dump, gas station, gift shop,
golf course, harbour, herb garden, highway, home o�ce,
hospital, hospital room, hot spring, hotel room, hotel
outdoor, ice cream parlor, iceberg, igloo, islet, ice skating
rink outdoor, inn outdoor, jail cell, kasbah, kindergarden
classroom, kitchen, kitchenette, laundromat, lighthouse,
living room, lobby, locker room, mansion, marsh, martial
arts gym, mausoleum, medina, motel, mountain, mountain
snowy, music studio, market outdoor, monastery outdoor,
museum indoor, nursery, ocean, o�ce, o�ce building,
orchard, pagoda, palace, pantry, parking lot, parlor, pasture,
patio, pavilion, phone booth, picnic area, playground, plaza,
pond, pulpit, racecourse, raft, railroad track, rainforest,
reception, residential neighborhood, restaurant, restaurant
kitchen, restaurant patio, rice paddy, river, rock arch, rope
bridge, ruin, runway, sandbar, schoolhouse, sea cli↵, shed,
shoe shop, shopfront, shower, ski resort, ski slope, sky,
skyscraper, slum, snowfield, staircase, supermarket, swamp,

stadium baseball, stadium football, stage indoor, subway
station platform, swimming pool outdoor, television studio,
topiary garden, tower, train railway, tree farm, trench, temple
east asia, temple south asia, track outdoor, train station
platform, underwater coral reef, valley, vegetable garden,
veranda, viaduct, volcano, waiting room, water tower,
watering hole, wheat field, wind farm, windmill, yard.

Appendix 2 - The backpropagation algorithm The cost
function is given by:

J(⇥)

Whereby⇥ is the hypothesis or simply called the model. The
model is defined by the configuration of weights it holds. The
cost function is a generalization of a logistic regression func-
tion. We want to optimize by min

⇥
J(⇥) by taking the partial

derivative. The resulting gradient in a general form is given
by:

g = (
@

@⇥l
i
) ⇤ J(⇥)

Whereby i stands for the index of the parameter and l for the
layer. The hypothesis, which is also the output of the network
is denoted by

h⇥(x)

.
To compute the hypothesis forward propagation is used. This
is done by computing all activation values for all neurons in
the neural network. The first layer activation equals the input
x(i), defined as:

a(1) = x(i)

The last layer activation is shown here:

a(L) = h⇥(x) = g(z(L))

Whereby L stands for the total number of layers in the net-
work and aL stands for the activation values of the L layer.
The term g(z(L)) is the activity of the last layer after apply-
ing an activation function. The activation is derived from
the previous layer activation taking the dot product of the
hypothesis. In detail it is defined as:

z(L) = ⇥(L�1) ⇤ a(L�1)

Backpropagation is an optimization function for updating
the parameters given by the cost function J(⇥). We want to
minimize the error this cost function produces and through
that increase the accuracy of our model. To achieve this
goal it is necessary to compute the cost function and partial
derivative of the cost function. The error of node j in layer l
is denoted with:

�(l)j
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For each node in each layer it is now important to calculate
the error term. For the last layer this is given by:

�(L)
j = a(L)

j � y j

Whereby y j stands for the actually observed value. �(L)
j (last

layer nodes) are also the di↵erence between what is the out-
put of the hypothesis and the true value. The error values
of the previous layers are not immediately obvious and need
to be calculated using the chain rule. The error term of the
previous layer (L � 1) is given by:

�(L�1) = (⇥(L�1))T�(L). ⇤ g0(z(L�1))

where g0(z(L�1)) = a(L�1). ⇤ (1 � a(L�1)) is referring to the
derivative of the activation function, T stands for transpose
and .⇤ stands for element-wise multiplication. The error is
calculated for all nodes in all layers through this iterative
process, except for the first one since the first layer holds
the input parameters that we don’t want to change. The error
is during stochastic gradient descent used to update the pa-
rameters accordingly. Without further regularization it then
could be shown for all layers that:

@

@⇥(l)
i j

⇤ J(⇥) = a(l)
j ⇤ �

(l+1)
i

Algorithmic implementation Given a training set
(x(1), y(1)), ..., (x(m), y(m)) and setting �(l)

i j = 0 for all l, i, j.
What makes � so important is that � can be used to cal-
culate @

@⇥(l)
i j
⇤ J(⇥) . This is done in the following steps

by looping through the training set. For i = 1 to m set
a(1) = x(i). Performing the forward propagation to com-
pute a(1) for l = 2, 3, ..., L using y(i) (the label), compute
�(i) = a(L) � y(i). After computing �(L), �(L�1), ..., �(2) we can
use them to compute:

�(l)
i j := �(l)

i j + a(l)
j ⇤ �

(l+1)
i

We are now able to compute:

D(l)
i j :=

1
m
⇤ �(l)

i j

Finally:

D(l)
i j :=

@

@⇥(l)
i j

⇤ J(⇥)

Appendix 3 - Stochastic Gradient Descent Updating the
parameters is done with the stochastic gradient descent al-
gorithm. After computing the error terms with the back-
propagation algorithm we can use those to update the net-
work with stochastic gradient descent. Stochastic gradient
descent (SGD) is used instead of gradient descent. SGD is
less computationally expensive to compute the gradient since
it doesn’t look at all training examples in every single itera-
tion. Batch gradient descent consists of repeating:

⇥ j := ⇥ j � ↵
1
m

mX

i=1

(h⇥(x(i)) � y(i))x(i)
j

for every j = 0, ..., n. Whereby a is the learning rate, m is the
amount of training examples and the other parameters are the
same as in Appendix 1. In comparison SGD defines the cost
function di↵erently:

cost(✓, (x(i), y(i))) =
1
2

(h⇥(x(i)) � y(i))(2)

resulting in the following cost function:

J✓ =
1
m

mX

i=1

cost(✓, (x(i), y(i)))

Algorithmic implementation The following steps are exe-
cuted during SGD:
First, randomly shu✏e the data set.
Second, repeat i = 1, ..,m for:

✓ j = ✓ j � ↵(h✓(x(i) � y(i))x(i)
j

for all values of j = 1, ..,m. Which is the actual updating
of the parameters. What SGD is doing during this process
is looking at an small amount of training examples and fit
the parameters on them. It does not sum over all training
examples.
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Appendix 4 - Number of Parameters The figure shows in detail the type and number of layers. Also showing the overall
number of parameters before freezing, 135.100.429 trainable parameters.

Appendix 5 - Number of Parameters Figure is showing the number of parameters after freezing, 14.714.688 trainable
parameters remain and 120.385.741 are non-trainable.
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Appendix 6 - Finding the optimal learning rate The table shows the process of finding the optimal learning rate. Showing
the learning rates 0,0001 (1e-4), 0,0010 (1e-3), 0,01000 (1-e2), 0,1000 (1-e1), 1. The highest accuracy, 32,05% was obtained
with a learning rate of 0,1. The most stable accuracy was achieved with a learning rate of 0,0001. This was the reason why
this learning rate was chosen, especially since the top performance was 32,00%.

Appendix 7 - Finding the optimal learning rate Plotting of di↵erent learning ratesShowing the learning rates 0,0001 (1e-4),
0,0010 (1e-3), 0,01000 (1-e2), 0,1000 (1-e1), 1. The drop of all di↵erent learning rates around the 10 epoch is something that
could not be explained within the context of this work.
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Appendix 8 - Overview training classifiers Number of epochs trained and the training and validation accuracy

Appendix 9 - Overview of changes during training Showing the di↵erences of training results


